

The University of the aly country vent to be DEPARTMENT OF MATHEMATICS AND COUNTRY VENUET TO AV'S 135

17th Nov. 1986

Dear Daniel,

While writing up my Durham talk I seemed to get the following slightly improved bounds for degrees and heights. Or am I overlooking something?

Let A be an abelian variety of dimension g, defined over a number field k and embedded in projective space. Let c's be positive constants depending only on A and k (in fact only on A and the degree of k). Let g be the absolute Neron-Tate height on $A(\overline{k})$.

Theorem. There exists c such that for any extension K of k of degree at most D we have

$$\#\{P \text{ in } A(K): g(P) \le c^{-1}D^{-1}\} \le cD^g(\log D)^g.$$

Note that P is <u>not</u> assumed non-torsion, or even non-zero. So we deduce

Corollary 1.
$$\#A(K)_{torsion} \leq cD^g(\log D)^g$$

Since the same bound holds for the $\frac{\text{exponent}}{\text{d(e)}}$ of A(K) torsion, we get d(e) >> $(\text{n(e)})^{(1/g)-\epsilon}$

in the notation of your Australian note (and this is Paula's result for g = 1).

A standard argument on integer multiples of P gives also

Corollary 2.
$$q(P) \ge c^{-1}D^{-(2g+1)}(\log D)^{-2g}$$
 for all P in $A(K)$ nontorsion.

This greatly improves the Anderson-Masser exponent of 10 for g=1. If A has CM then taking the full endomorphism ring gives $g >> D^{-2}(\log D)^{-1}$.

Taking $K = k(A_n)$ (points of order dividing n) gives

Corollary 3.
$$[k(A_n):k] \ge c^{-1}n^2/\log n$$
.

For g = 1 this is my old Bull. London Math. Soc. result.

Here is a sketch of the proof (I can't really say that there are any new ideas - indeed I'm only writing this out as a method of detecting mistakes). Take a large constant C, and use r for the "norm squared" on $A(\mathbb{C})$ induced by some norm on \mathbb{C}^g (e.g. the sup norm)

Step 1. (standard). We can assume A is simple.

Step 2. (standard). Use the Box Principle to show that it suffices to deduce a contradiction from the existence of a finite subset $\mathcal A$ of A(K) whose points P satisfy

$$q(P) \le C^{-4}D^{-1}, r(P) \le C^{-4}$$

and

$$S = \# \mathcal{S} = c^{4g+1}D^g(\log D)^g$$
.

Step 3 (a new remark?). As \mathcal{S} has no "additive structure" we use the set $\mathcal{S}^{(g)} = \{P_1 + \ldots + P_g \colon P_1, \ldots, P_g \text{ in } \mathcal{S}\}$. For P in $\mathcal{S}^{(g)}$ we have $g(P) \leq x^{-1}$, $x = g^{-2}c^4D$ (1)

$$r(P) \le Y^{-1}, \qquad Y = g^{-2}C^4$$
 (2)

Thus $\mathcal{A}^{(g)}$ has properties like those of \mathcal{A} ; but it is much better for doing zero estimates.

Step 4. (a minor technical point, but amusing). Write down a set B of basis elements β of K over Q with

log height(
$$\beta$$
; β in B) << D . (3)

Note that we don't have a bounded number of generators for K over \mathbb{Q} ; for positive integers $\mathbf{d}_1,\dots,\mathbf{d}_n$ the inequality

$$\sum_{i=1}^{n} (d_i - 1) \leq (\prod_{i=1}^{n} d_i) - 1$$

is useful.

Step 5 (Schwarz + Waldschmidt). Since we don't know a Schwarz Lemma for $\mathcal{N}(\text{or }\mathcal{N}^{(g)})$ we have to use Waldschmidt's "Théorème 3.1" of his Inventiones paper. Take his L as

$$L_{w} = c^{6g}D^{2g+1},$$

his S as

$$S_{W} = C^{-g+4}D,$$

his U as

$$U = c^4 D^2,$$

and

$$r = 2Y^{-\frac{1}{2}}, R = er.$$

The functions are the

$$\varphi_{\lambda} = \beta \Theta^{\underline{\lambda}_{1}} (\underline{z}) \Theta^{\underline{\lambda}_{2}} (\underline{N}\underline{z}) \qquad (\beta \text{ in B, } |\underline{\lambda}_{1}| = |\underline{\lambda}_{2}| = \underline{L}) \qquad (4)$$
 with our L as

$$L = C^3 D$$

and

$$N = C^2 D^{\frac{1}{2}}$$
.

Here $\theta^{\underline{\lambda}}=\theta^{\lambda_0}_0\cdots\theta^{\lambda_g}_g$ for $\underline{\lambda}=(\lambda_0,\ldots,\lambda_g)$ and homogeneously algebraically independent theta-functions. Check that L_w , the number of functions $\phi_{\underline{\lambda}}$, is equal to DL^{2g} , at least up to constants.

There are two conditions yet to verify. One is

$$(8U)^{g+1} \leq L_w S_w (\log R/r)^g$$

(immediate). The second is

$$\sum_{\lambda} |\phi_{\lambda}|_{R} \leq e^{U}.$$

But

$$\log |\phi_{\lambda}|_{R} \ll D^{2} + L + LN^{2}R^{2}$$
 (5)

and this gives it.

The conclusion is that there are rational integers \boldsymbol{p}_{λ} with

$$0 < \max_{\lambda} |p_{\lambda}| \le e^{S_{W}}$$
 (6)

and

$$F = \sum_{\lambda} p_{\lambda} \phi_{\lambda}$$

satisfying

$$|F|_r \leq e^{-U}$$
.

Step 6 (standard). Use Cauchy to deduce that

$$|\Delta F|_{\frac{1}{2}r} \leq e^{-\frac{1}{2}U}$$

for all $\Delta = (\partial/\partial z_1)^{t_1} \dots (\partial/\partial z_g)^{t_g}$ of order at most $T = C^3 D/\log D.$

In particular

$$|\Delta F(\underline{u})| \leq e^{-\frac{1}{2}U} \tag{7}$$

for each \underline{u} in \mathbb{C}^g with $|\underline{u}| \leq Y^{-\frac{1}{2}}$ that corresponds to some P in $\mathcal{J}^{(g)}$ (see (2)).

Step 7 (zero estimate). There exists P_0 in $\mathcal{A}^{(g)}$ and Δ_0 with $|\Delta_0|$ < T such that

$$\Delta_0 F(\underline{u}_0) \neq 0 \tag{8}$$

for the corresponding $\underline{\mathbf{u}}_0$.

We do this as is sketched at the end of §3(a) of your Australian note. Consider F as a function on A of degree << LN 2 ; it is of course not zero because N $^2 \ge$ CL. In view of Wüstholz's generalized " $^\omega$ t,A $^>>$ t $^\omega$ l,A" estimates, it suffices to have sharp zero estimates for the set $^{(g)}$; but these are given in ZEGV II (quite possibly the whole thing, multiplicities included, could be done by Philippon, but I didn't check this). In fact since A is simple, we get easily

$$\omega_{1,A}(A^{(g)}) >> (\#A)^{1/g} = s^{1/g}.$$

The required assertion (8) follows from comparing LN^2 and

$$TS^{1/g} \geq c^{1/g}LN^2$$
.

Henceforth assume that Δ_0 is minimal for this P_0 .

Step 8 (standard). Let f be F divided by a suitable theta function Θ Then

$$\Delta_0 f(\underline{\mathbf{u}}_0) = \Theta(\underline{\mathbf{u}}_0)^{-1} \Delta_0 F(\underline{\mathbf{u}}_0)$$

Lower bounds for Θ are purely technical and just follow the calculation (5). We find from (7)

$$|\Delta_0 f(\underline{u}_0)| < e^{-\frac{1}{4}U}$$
 (9)

Finally we have to estimate the height. From (3), (4) and (6) we find the logarithmic bound

$$<< S_W + D + Tlog T + Tlog N + (T + L)(1 + q(NP_0)).$$

By (1) this is at most << C3D. Thus we get

$$\log |\Delta_0 f(\underline{u}_0)| \gg -c^3 D^2$$
,

contradicting (9).

This completes the sketch of the proof. I can't see any mistakes; but you know how it is with these things.

Best wishes,

David

P.S. For g=1 I am fairly sure it's OK; I even wrote out a detailed proof with the dependence on the logarithmic height h of g_2, g_3 worked out. It gives for example

$$[k(E_n):k] >> h^{-\frac{1}{2}}n^2(h + \log n)^{-1}$$

for Corollary 3, with an implied constant depending only on k.

I intend also to work out the dependence on h = h(A) for g > 1; but this won't be quite as straightforward.

P.P.S. It is nice that the points P of A(K) which are counted in the Theorem are those with $q \ll D^{-1}$ - the opposite inequality here is just the analogue of Lehmer's problem, of course.

we then $q \gg D^{-1/9}$